
Supplementary Material:
Capturing Closely Interacted Two-Person Motions with Reaction Priors

Figure 1. Sample Poses in Dual-Human.

In this supplementary material, we provide the statistics
and the data processing of Dual-Human (Sec. 1). We also
describe the network architectures and running time in de-
tails (Sec. 2). What’s more, we discuss the social ethics and
impact of our dataset (Sec. 3). Additionally, we show some
qualitative results in Fig. 4 and the supplementary video.

1. Dual-Human Dataset

The preview of our Dual-Human dataset can be found in the
supplementary video and Fig. 1. We describe the statistics
as well as the details of model fitting here.

1.1. Statistics

The statistics of our dataset is shown in Table 1. Dual-
Human has around 2k two-person motions with a to-
tal duration of 3.05 hours, covering 3 major categories
(daily motions, dance, sports, Fig. 2) and nearly 70 sub-
categories. Specifically, daily motions include ‘hug’,
‘push/pull’, ‘handshake’, ‘comfort others’, etc. Dance
mainly includes motions in various ballroom dances. Sports
include ‘basketball’, ‘soccer’, ‘boxing’, ‘sit-ups’, etc. There
are 118 scenes for the rendering of Dual-Human, including
20 3D scenes and 98 HDRI scenes, which guarantees the
variety of backgrounds. We use some assets (e.g., textures,
cloths) from BEDLAM [1]. We simulate cloths with Mar-
velous Designer and render images with Unreal Engine 5.3.

Motions Scenes Subjects Skins Cloths Textures
2019 118 40 100 52 1076

Table 1. Statistics of Dual-Human.

Daily Motion 57%

Dance 18%

Sports 25%

Figure 2. Distribution of Motions in Dual-Human.

1.2. Model Fitting

We fit the parametric human model SMPL-X [7] to Xsens
3D joints and extract contact annotations automatically.

We use the common 3D joint loss and regularization
losses for poses and shapes as follows:

L3d =
∑
t

ρ(J (θt,β)− Jt), (1)

Lpreg =
∑
t

||θt||22, (2)

Lsreg = ||β||22. (3)

Besides, the velocities of adjacent frames should be
close:

Lsmooth =
∑
t

||J̇t − J̇t−1||22. (4)

To deal with penetration, we adopt the interpenetration
loss in [6], whose effect can be validated from Fig. 3.
Specifically, a modified Signed Distance Field (SDF) is de-
fined as follows:

ϕ(x, y, z) = −min(SDF (x, y, z), 0), (5)
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Figure 3. Comparison: (a) w/o interpenetration loss; (b) w/ inter-
penetration loss.

which is positive inside the human and 0 outside the human.
ϕ is defined on voxelized human meshes M and prevents
the collision through the following loss:

Lsdf = ρ(
∑

v∈Ma

ϕr(v)) + ρ(
∑
v∈Mr

ϕa(v)). (6)

The final loss is:

Lfit =λ3dL3d + λpregLpreg + λsregLsreg+ (7)
λsmoothLsmooth + λsdfLsdf , (8)

where λ3d = 5, λpreg = λsreg = 0.01, λsmooth = 5,
λsdf = 0.0001.

Furthermore, as the annotation process for our large mo-
tion data is tedious, we obtain the contact vertex indices
based on the SDF value.

2. Network Architecture
In this section, we detail the motion representation, as well
as the network structures of motion VAE, reaction INN,
pose estimator, and SmoothNet. We also report the running
time of each module.

Motion Representation: Before illustrating the network
architectures, we first introduce the motion representation in
reaction priors. Following [5], we convert 3D human joints
to 263-dim hybrid representations as follows:

x = [ṙa, ṙx, ṙz, ry, jp, jv, jr, cf ], (9)

where ṙa ∈ R is the root angular velocity along Y-axis;
ṙx ∈ R and ṙz ∈ R are the root linear velocities along
X-axis and Z-axis, respectively; ry ∈ R is the root height;
jp ∈ R3(Nj−1), jv ∈ R3Nj , and jr ∈ R6(Nj−1) are local
joint positions, velocities, and local rotations; cf ∈ R4 is
the binary foot-ground contact. Here Nj = 22.

Additionally, different from single-person motions that
are in canonical coordinates, two-person motions should

preserve the relative direction and translation of two people.
Therefore, we expand the original 263-dim to 269-dim with
the initial direction and translation. Note that for motion
VAE of a single person, we only use the first 263-dim, and
the last 6-dim is used to recover the two-person motions.

Motion VAE: We follow the Transformer VAE structure
in [2, 8], as shown in the Fig. 3 in the main manuscript. The
linear layer in the encoder converts the motion representa-
tion to the latent representation of dimension 1 × 256. The
distribution tokens have the dimension of 512 and can be
divided into respective 256-dimensional mean and variance
of the latent distribution. The number of layers and heads
are 9 and 4 for both the encoder and decoder, respectively.
The feed forward networks are 1024-dimensional.

Reaction INN: We first introduce the preliminary knowl-
edge of INN. In order to explain it easier, we borrow some
concepts from the normalizing flow, which is one of the
popular INNs.

Given a data variable x ∈ X , a prior probability distri-
bution pZ about a latent variable z ∈ Z, and a bijection
f : X → Z, the model distribution on X can be defined via
the change of variable formula as follows:

pX(x) = pZ(f(x))|det(
∂f(x)

∂xT
)|, (10)

where ∂f(x)
∂xT is the Jacobian of f at x. Therefore, as long as

the Jacobian of f is invertible and well-designed, a bijective
model that is both tractable and extremely flexible can be
constructed.

Our reaction INN is constructed following RealNVP [3].
We adopt 8 affine coupling layers and each includes 2-layer
MLPs with Leaky ReLU for both the scale network s and
the translation network t. Specifically, the feature is first
divided into [u1,u2], and the operations in the affine cou-
pling layer are as follows to obtain the transformed feature
[u′

1,u
′
2]:

u′
1 = u1 (11)

u′
2 = u2 ⊙ exp(s(u1)) + t(u1). (12)

After one layer, [u′
1,u

′
2] is swapped to [u′

2,u
′
1] and fed

to the next layer for more powerful capability.
The Jacobian of the affine coupling layer is:

∂u′

∂uT
=

[
I 0

∂u′
2

∂u1
diag(exp(s(u1)))

]
, (13)

from which we know its determinant is exp(
∑

s(u1)) and
is irrelevant to the Jacobian of s and t. Therefore we can
choose s and t with arbitrary complexity.

In our implementation, the input and output (mean and
variance) to the reaction INN both have the dimension of
512. The structure is simple and lightweight.



Figure 4. Qualitative Results on in-the-wild Images.

Pose Estimator: The pose estimator includes a feature
extractor, a Transformer decoder, and final MLPs, which
is similar to 4D-Humans [4]. However, instead of crop-
ping the single person, we use the whole image (512×512)
as input. HRNet-W48 [9] is adopted to extract the image
features (2048 × 16 × 16). After that, the Transformer de-
coder (6 layers, 8 heads, 1024 feed forward dimension) with
interaction-aware self-attention queries the information of
human poses, translations and probability from the image
features. The final MLPs map the decoded features to the
corresponding variables (63-dim poses, 3-dim translations
and 1-dim probability). The translation estimation from the
previous frame as the ‘Track’ query is concatenated with
other queries of the current frame to guide the attention.

SmoothNet: We adopt SmoothNet [10] to impose tempo-
ral constraints. SmoothNet has an encoder layer, a decoder
layer and 5 middle blocks. The encoder and decoder both
have 1 layer. Each block contains two linear layers with
LeakyReLU, dropout and skip connections. The input win-
dow length is 64 and the hidden size is 512. The output has
the same dimension as the input.

Running Time: The running times on an RTX 2080ti
GPU (batch size 1) of the pose estimator, the SmoothNet,
the motion VAE, and the reaction INN are 69ms, 1ms,
20ms, and 3ms, respectively.

3. Social Ethics and Impact
The performers freely volunteer to participate in the motion
collection. Since we only capture the motions and use syn-
thetic images, the personal privacy is fully considered.

As for the social impact, our dataset is promising to pro-
mote further researches in interacted human motion capture
and generation.
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