
Supplementary Material:
Learning Analytical Posterior Probability for Human Mesh Recovery

In this supplementary material, we provide more expla-
nations about distribution parameters (Sec. 1), and detailed
derivations of crucial theorems (Sec. 2). We also describe
the sampling procedure (Sec. 3). To demonstrate the prob-
ability models intuitively, we visualize them contrastively
(Sec. 4). For some unmentioned details, we simply list
them for completeness (Sec. 5).

1. Parameter explanation
1.1. matrix Fisher distribution

In this part, we try to illustrate the parameter F of matrix
Fisher distribution from a simple geometric perspective. As
stated in the main manuscript, the probability density func-
tion of matrix Fisher distribution MF(·) over SO(n) [1,5]
is as follows:

p(R;F ) =
1

c(F )
exp(tr(F TR)) ∼ MF(F ).

Suppose there are two sets of unit vectors {li} and {di},
and the vectors in {li} are linearly independent. To calcu-
late a rotation R that can transform {li} to {di}, the esti-
mation can be derived by minimizing the L2 distance:

R̂ =argmin
R

∑
i

||di −Rli||22

=argmin
R

∑
i

(dT
i di + lTi li − 2dT

i Rli)

= argmax
R

∑
i

dT
i Rli = argmax

R

∑
i

tr(lid
T
i R)

= argmax
R

tr[
∑
i

lid
T
i R].

If we define F ≜ s
∑

i dil
T
i with the scale factor s, then

the above equation has a similar formulation as the standard
matrix Fisher distribution. In this sense, we have:

F ′ = F + κdlT = s
∑
i

(dil
T
i ) + κdlT ,

which means the original parameter F can be comprehend
as the sum of the outer product of some paired vectors (li,
di), while the updated parameter F ′ is equivalent to fusing
more paired vectors on the basis of the original data.

1.2. von Mises-Fisher distribution

In this part, we illustrate the relation between normal
distribution and von Mises-Fisher distribution. As stated
in the main manuscript, the probability density function of
von Mises-Fisher distribution VMF(·) [6] is as follows:

p(d;κ,m) =
1

c(κ)
exp(κmTd) ∼ VMF(m, κ).

Remark. The von Mises-Fisher distribution becomes the
uniform distribution on the sphere for κ = 0, and it approx-
imates the wrapped normal distribution with the same mean
m and variance κ−1 for a large κ:

VMF(m, 0) = U(Sn−1),

VMF(m, κ) ≈ WN (m, κ−1), κ ≫ 0.

Proof. It’s easy to prove the statement for κ = 0. There-
fore only the case of a large κ is discussed here. Note
that both m and d can be assumed as unit vectors, leaving
their scale factors to the normalizing constant. For conve-
nience, we represent m and d as trigonometric functions,
i.e., (cos θm, sin θm) and (cos θd, sin θd), respectively.
Therefore, the probability density function is as follows:

p(θd;κ, θm) =
1

c(κ)
exp(κ · cos(θd − θm)).

Let ξ = κ1/2(θd − θm), then we can derive its probabil-
ity formulation as follows:

p(ξ) ∝ exp(−κ) · exp(κ · cos(κ−1/2ξ))

≈ exp(−κ+ κ(1− 1

2
κ−1ξ2))

= exp(−1

2
ξ2) ∼ N (0, 1),

where exp(−κ) is a constant term independent of θd for
transformation, and the first two terms of Taylor series
of cos(·) is used. Based on the fact that p(ξ) follows
the standard normal distribution, we can derive that d ∼
VMF(m, κ) ≈ WN (m, κ−1) for large κ (the condition
for Taylor expansion). Note that the wrapped normal distri-
bution is used here due to periodicity.
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2. Theorem derivation

In this section, we derive some theorems about the poste-
rior probability and the corresponding property thoroughly.

2.1. Posterior distribution

Remark. For l,d ∈ Rn, R ∈ Rn×n, the following equa-
tion holds:

tr(ldTR) = lTRTd.

Proof.

left = tr(ldTR)

=
∑
i

(ldTR)ii =
∑
i

li(d
TR)i = lT (dTR)T

= lTRTd = right.

Theorem 2.1. The analytical probability of rotation R ∈
SO(n) conditioned on bone direction d ∈ Sn−1 satisfies:

p(R|d) ∼ MF(F + κdlT ).

Proof.

p(R|d) = p(R) · p(d|R)

p(d)
∝ p(R) · p(d|R)

=
1

c(F )c(κ)
· exp(tr(F TR) + κlTRTd)

=
1

c
exp(tr(F TR) + tr(κlTRTd))

=
1

c
exp(tr(F TR) + tr(κldTR))

=
1

c
exp(tr(F TR+ κldTR))

=
1

c
exp(tr[(F + κdlT )TR])

∼ MF(F + κdlT ).

Theorem 2.2. (General form) The analytical probability of
rotation R ∈ SO(n) conditioned on directional observa-
tions d ∈ Sn−1 and rotational observations D ∈ SO(n)
satisfies:

p(R|{di,Dj}) ∼ MF(F +
∑
i

κidil
T
i +

∑
j

DjK
T
j ).

Proof. Similar to the bone direction, the rotational obser-
vations from other sensors can also become the observation

variables D of the latent variable R:

p(D|R) =
1

c
exp(tr[(RK)TD]) =

1

c
exp(tr[KTRTD])

=
1

c
exp(tr[DTRK]) =

1

c
exp(tr[KDTR])

=
1

c
exp(tr[(DKT )TR]) ∼ MF(DKT ),

where the parameter is decomposed into a mean term R and
a concentration term K at first, and we use some properties
of square matrices: (i) tr(A) = tr(AT ); (ii) tr(AB) =
tr(BA). Therefore, the theorem can be derived as follows:

p(R|{di,Dj}) =
p(R) · p({di,Dj}|R)

p({di,Dj})

∝ p(R) ·
∏
i

p(di|R) ·
∏
j

p(Dj |R)

=
1

c
exp(tr[(F +

∑
i

κidil
T
i +

∑
j

DjK
T
j )

TR])

∼ MF(F +
∑
i

κidil
T
i +

∑
j

DjK
T
j )

Theorem 2.1 and 2.2 provide the proofs of Eq. (6), (9) in
the main manuscript, respectively.

2.2. Property

Here we provide more details about the proof of the
property (Eq. (7) in the main manuscript). First, we state a
lemma for the later proof.

Lemma 2.3. (Interlacing theorem) Suppose n ≥ 2, K ∈
Rn×n is Hermitian, and l ∈ Rn is nonzero. Then the eigen-
values satisfy the following inequality:

λ1(K) ≤ λ1(K + ll∗) ≤ λ2(K) ≤ · · · ≤
λn(K) ≤ λn(K + ll∗),

which means the eigenvalues for a Hermitian perturba-
tion with rank 1 of a Hermitian matrix are larger than the
corresponding original eigenvalues in an interlaced man-
ner [3].

Back to the proof of the property. Since the mean term
M is orthogonal and satisfies Ml = d, we can decompose
the posterior parameter F ′ as follows:

F ′ = F + κdlT = MK + κMllT = M(K + κllT )

= MK ′,

where K = V ∆SV T is a real symmetric matrix consid-
ering that both ∆ and S are diagonal. Besides, llT , the
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outer product of l with itself, is a symmetric matrix with
rank 1. Thus K ′ is also real symmetric, i.e., Hermitian.
From Lemma 2.3, we can get the conclusion that K ′ has
larger eigenvalues than K, therefore the singular values of
the posterior parameter F ′ is larger than those of the prior
parameter F .

Fig. 1 illustrates the convergence performance regard-
ing the accuracy of SMPL poses for two different settings,
respectively, estimating prior F without a keypoint branch
and posterior F ′ with a keypoint branch. The latter clearly
converges faster and better.

Figure 1. Convergence comparison.

3. Sampling

As we stated in the main manuscript, because of the
equivalence between Bingham distribution on S3 and ma-
trix Fisher distribution on SO(3), we sample the Bing-
ham distribution instead via differentiable rejection sam-
pling [4, 7]. Algorithm 1 lists the detailed procedure. The
proposal distribution in rejection sampling is an angular
central Gaussian (ACG) distribution, the sampling of which
is implemented with the reparameterization trick.

Algorithm 1: MF Rejection Sampling

Input: F ∈ R3×3

Output: Ri ∼ MF(F )
1 U , S, V T = SVD(F ), where S = diag(s1, s2, s3)
2 ▷ Sample matrix Fisher via Bingham
3 A = diag(0, 2(s2 + s3), 2(s1 + s3), 2(s1 + s2))

4 Solve b, s.t.
∑4

i=1
1

b+2Ai
− 1 = 0

5 Ω = I4 +
2
bA

6 M = ( 4b )
2 exp( b−4

2 )
7 ▷ Sample Bingham via ACG as proposal distribution
8 repeat
9 Sample w ∼ U(0, 1)

10 Sample ϵ ∼ N (04, I4) ▷ reparameterization
11 y = (Ω−1)

1
2 ϵ

12 Get a proposal x = y
∥y∥ s.t. x ∈ S3

13 until w < exp(−xTAx)
M(xTΩx)−2 ;

14 Ri = UXV T , where X = quat to mat(x)
15 return Ri

(a)                   (b)                   (c)                     (d)

(e)                         (f)                         (g)

Figure 2. Comparison of different models.

4. Figure illustration
In this part, we illustrate Fig. 3 in the main manuscript

thoroughly. As shown in Fig. 2, relevant spheres represent
the following underlying models: (a) deterministic direction
without probabilistic modeling (e.g., IK estimations); (b)
directional distribution with large confidence (e.g., gravity
sensors); (c) directional distribution with small confidence;
(d) uniform distribution on the sphere; (e) rotational dis-
tribution with large confidence (e.g., gyroscopes); (f) rota-
tional distribution with small confidence; (g) rotational pos-
terior distribution conditioned on directional information.

The eigenvalues of (e) are larger than those of (f), thus,
(e) shows a more concentrated distribution. For (g), since
the directional information is provided and fused, the dis-
tribution is more concentrated on the blue arrow, so the re-
gions around the red and green arrows show oval shapes
(not circles). (g) is easier to learn compared with directly re-
gressing parameters (validated by Fig. 1), because the prior
and the keypoints not only mutually narrow down the re-
gion of solutions but also have the potential to recover the
ground-truth even for noisy cases.

5. Others
In this section, we provide some unmentioned details.

Error definition: Given the estimated rotation R̂,
ground-truth R∗, and canonical unit vector l, the rotation
error ErrR and direction error Errd in the simulation ex-
periment are as follows:

ErrR = arccos(
tr(R∗R̂T )− 1

2
),

Errd = arccos(< R∗l, R̂l >).
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Module Block Input Output
Conv(R) ResNet Image (256, 256, 3) (fc, 8, 8)

Deconv(R)
{Deconv+BN+ReLU} ×3 (fc, 8, 8) (fc, 64, 64)
1× 1 Conv (fc, 64, 64) (29× 64, 64, 64)
Soft-argmax (29× 64, 64, 64), s J(29, 3)

Conv(H) HRNet Image (256, 256, 3) (fc, 64, 64)

Deconv(H) 1× 1 Conv (fc, 64, 64) (29× 64, 64, 64)
Soft-argmax (29× 64, 64, 64), s J(29, 3)

MLP feature AvgPool + Fc1 + Dropout (fc, 64, 64) (f ′
c)

Fc2 + Dropout (f ′
c) (f ′

c)
MLP(β) Fc(β) (f ′

c) β(10)
MLP(F ) Fc(F ) (f ′

c) F (216)
MLP(s) Fc(s) (f ′

c) s(1)
Output shape β(10), parameter F (216), 3D keypoints J(29, 3)

Table 1. Network architecture.

Differential entropy: For the matrix Fisher distribution,
the differential entropy HF can be a representation of its
uncertainty [2, 8] and calculated via Bingham distribution:

HF = log cB −
3∑

i=1

ki
∂cB
∂ki

− log(2π2),

where cB , K = [k1, k2, k3] are the normalizing constant
and the concentration parameters of Bingham distribution,
respectively. We normalize the entropy from multiple sen-
sors, since the differential entropy has not a certain range.
Note that other metrics also deserve exploration.

Network architecture: Table 1 lists the structure of our
network and the corresponding feature dimensions. fc is the
number of feature channel relevant to different backbones.
f ′
c is the MLP feature dimension. Fc1 and Fc2 are shared

by MLP branches.

Model size and running time. The total numbers of
trainable parameters and the running time on an RTX 2080ti
GPU (batch size 1) are 27.8M / 19ms (R-34 backbone) and
73.4M / 46ms (H-48 backbone), respectively. The model
size and speed are of the same level as other frameworks.
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